Ion internal transport barrier in Large Helical Device
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The electron and ion heat transport and particle transport are independent from appearance of spontaneous rotation driven by ion temperature gradient.
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The transport becomes worse .
The ITB structure appears both ion temperature, electron temperature, electron outside of the ITB region width [(T (0)/gradT )/a] The mechanism of ITB location shift is not clarified but would be related to
density in most ITB plasma in tokamaks the strong space coupling in transport (local model can not explain it)




