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Understanding the physical mechanisms governing the H-mode transition

Transport bifurcation to an improved confinement regime is directly related to the
formation of sheared flows that can stabilize the turbulence
Small-scale fluctuations ===y  Larmor radius size

Long-scale instabilities =) Up to system size

Zonal flows (turbulence generated low frequency potential structures) have been
suggested to explain the Low to High transition (L-H) in magnetic confinement devices
P. Diamond, S-I. Itoh, K. Itoh, and T.S. Hahm, Plasma Phys. Control. Fusion 47 (2005) R35

A. Fujisawa, Nucl. Fusion 49 (2009) 013001

The characterization of the emergence of sheared flows and the quantification of the
degree of long-range correlation can provide relevant information on the mechanisms
involved in the transition to improved confinement regimes.
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» Confinement bifurcations in TJ-II:
Experimental set-up
Spontaneous low density transitions
Biasing induced transitions
NBI regime transitions (H-mode)
* Long-range correlations at TJ-II
Long-range correlation measurements
Multi-scale correlation properties
Interplay between different frequency ranges
» Comparison with fast camera measurements

» Comparison with Zonal Flows model
* Summary

 Actions under way
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» Confinement bifurcations in TJ-II:
Experimental set-up
Spontaneous low density transitions
Biasing induced transitions
NBI regime transitions (H-mode)
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Under some conditions a transition to an improved
confinement mode has been observed in TJ-II.

F. L. Tabarés, B. Branas et al., Plasma Phys. Control. Fusion 43 (2001) 1023
I. Garcia-Cortés et al., Plasma Phys. Control. Fusion 44 (2002) 1639

V. |. Vargas et al., Informes Técnicos Ciemat 1162 (2009)

Above a critical density (or gradient) the naturally occurring
velocity shear layer appears in the proximity of the LCFS.

Transient events appear in the proximity of the TJ-II
threshold density to trigger edge sheared flows.

M.A. Pedrosa, C. Hidalgo et al., Plasma Phys. Control. Fusion, 47 (2005) 777
C. Hidalgo, M.A. Pedrosa et al., Plasma Phys. Control. Fusion, 48 (2006) S169
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4500; o Probe 11 Edge sheared flows are developed at the same threshold
Tn\ ] density in the two toroidal positions.
© _
E3500 : . |
m ] Sheared flows and fluctuations appear to be organized near
~ 1 c e
2 ; marginal stability.
w
2500 + ‘}— _ C. Hidalgo, M.A. Pedrosa et al., Phys. Rev. E 70 (2004) 067402
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0 The experimental results for the emergence of the plasma
> O : : .
2 ] edge shear flow layer in TJ-Il have been explained using a
o ¢ ] simple model for a second-order transition.

e |

% _2:_. T _ B.A. Carreras, L. Garcia et al., Phys. Plasmas 13 (2006) 122509
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J Biasing induced transition
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Preliminary results with dynamic biasing shows
modulation of plasma density, Ha, edge electric field and
fluctuations depending on the plasma density and on the
frequency of applied voltage.

Results strongly depend on the plasma density and on
the applied voltage and its frequency.

Density effects for shear flow development can compete
with biasing effects.
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* Long-range correlations at TJ-II
Long-range correlation measurements
Multi-scale correlation properties
Interplay between different frequency ranges
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Long-range correlations at TJ-ll plasma edge
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Floating potential signals measured at both toroidal
locations show a striking similarity, contrary to that
observed in the ion saturation current signals.

The similarity in the floating potential signals is observed
in shorter time scales, particularly in the fast events that
appear as sheared flows develop.

Long-range correlation has been computed for different
TJ-Il plasma conditions (plasma density scan, electrode
bias experiments and NBI heated plasmas).

E{ [x(t+7)-X][y(2)- y]}
\/E x(t) x]} {[y(t)—?]}

Y, (T) =
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Increase in the toroidal coherence (between floating
potential signals) simultaneous to a decrease in the

local density-potential (flux related) coherence.
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(ke Long-range correlation: density induced transition

Toroidal floating potential correlation strongly depends on the plasma density (or gradient)

being larger as density increases up to the threshold value for shear flows development.
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» Long-range coherence shows a strong increase at low frequencies (below 20 kHz) during the transition to
improved confinement regimes (biasing experiments).

» Local density-potential (flux-related) coherence is reduced at low frequencies (below 20 kHz) during the
transition to improved confinement regimes.

» Results suggest transport regulation by long-range flows.
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(Do Long-range correlation: probe position effects

Multi-scale physics mechanisms are amplified by electric fields.

In the framework of second-order phase transition long-range correlation is expected in the order parameter
(shearing rate) related with the electric field.
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M.A. Pedrosa, C. Silva, C. Hidalgo, et al. Phys. Rev. Letters 100 (2008) 215003
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_J Long-range correlation: dynamic biasing transition
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Dynamic biasing induces modulated changes in
global and edge plasma parameters with the
biasing frequency.

Fast transient events are seen approaching the
transition and the reduction of fluctuations level.




Long-range correlation: dynamic biasing transition
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Dynamic biasing induced modulated changes in
global and edge plasma parameters with the
biasing frequency.

Fast transient events are seen approaching the
transition and the reduction of fluctuations level.

Workshop, Princeton 2009
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Long-range correlation: dynamic biasing transition
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Fast transient events appear simultaneously
in the two toroidaly apart positions.
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Long-range correlation: dynamic biasing transition
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Fusion

Maximum correlation between floating potential signals increases approaching the improving confinement
regime where fluctuations decrease showing maximum values during transient events.
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o Long-range correlation: NBI transition
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Long-range correlation: NBI transition
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Spontaneous bifurcations observed in TJ-Il plasmas
with Li-coating and NBI heating with H-mode
characteristics.

J. Sanchez et al., Nucl. Fusion 49 (2009) 104018

» Density gradient and the stored plasma energy
increase.

* Reduction in Ha emission.

* Reduction of broadband fluctuations level.
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Long-range correlation: NBI transition
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Density fluctuations are reduced over a wide range.

Low frequency fluctuations
measurements (below 40 kHz) are not significantly

reduced at the transition.

in the potential
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Degree of long-range coupling for potential
fluctuations:

 is significant and intermittent in the low
confinement regime.

* increases at the bifurcation point.

* matches the 1/Ha evolution.




Long-range correlation: NBI transition
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Long-range correlation: NBI transition
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Long-range correlation: NBI transition
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(""" Radial dependence of long-range correlations

The maximum correlation of the floating potential signals is observed when probes are approximately at the
same radial location in the plasma edge.

Probe 1 is moved radially
Probe 2 is kept fixed at r/a=0.9

o
o

LIS NN W S —— —— — —— L LN I LI B L A |
e Potential L

®* Density _
& { I W—

o
o

o
N

Maximum Cros-Correlation
o
N

Radially inwards

O ....|....|....|....:
40 -30 -20 -10 0O 10 20
(r ) (mm)

Probe1 Probe2

C. Hidalgo, M.A. Pedrosa et al., Eur. Phys. Lett. 87 (2009) 55002
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Multi-scale correlations properties

S(k,f) analysed using a standard two-points correlation technique.
Long range S(k,f) spectrum in H-mode indicates propagation (that can be radial).
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()57 Interplay between different frequency ranges

The integrated potential power spectra in the low and high frequency ranges are approximately anti-correlated.

This result is consistent with energy transfer between broadband turbulence and low frequencies fluctuations
(i.e. between different plasma scales).
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« Comparison with fast camera measurements
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L Comparison with fast camera measurements
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Fast camera experiments have shown the
capability to detect the 2-D structure of plasma ,
fluctuations in different plasma regimes. ¥
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L Comparison with fast camera measurements
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« Comparison with Zonal Flows models
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The experimentally observed correlations can be understood in the framework of simple transition models
including the contribution of zonal flows in an appropriately way .
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I. Calvo et al., Plasma Phys. Control. Fusion 51 (2009) 065007

I —
17th Stellarator / Heliotron Workshop, Princeton 2009 E"‘“ P




Laboratorio
Nacional OUTL'NE
Fusion

* Summary
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v High long-range correlations (in potential fluctuations) have been found in the TJ-Il plasma
edge.

v’ Long-range correlations are amplified by the presence of radial electric fields (transitions to
improved confinement regimes).

v’ It remains as an open question to clarify which mechanisms can provide such long-range
correlations in plasma potential but not in density fluctuations.

v' The experimental measurements and the good agreement obtained with the model results
suggest that the phenomenon of the long-range correlations is an indication of the
development of zonal flows during the transition.

TJ-ll findings show the important role of long distance correlation as a first step in the
transition to improved confinement regimes and the key role of electric fields to
amplify them.
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Priority research area of the EFDA Transport Topical Group
v TJ-Il experiments:

Radial characteristics of the toroidal structures
Improvement of dynamic biasing experiments
Measurement of Reynolds stress components

v'Diagnostics development to characterize simultaneously the structure of sheared flows at
different plasma locations.

v'Comparative studies in different geometry devices and during L-H transition.

Results from: TJ-K (P. Manz et al., Phys. Plasmas 16, 042309 (2009))
TEXTOR (Y. Xu et al., submitted to Phys. Plasmas (2009))
ISSTOK (C. Silva et al., Plasma Phys. Control. Fusion 51, 085009 (2009))
HL-2A (K. J. Zhao et al., to be published)

v'Link with modelling and theory activities.
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Preliminary results with dynamic biasing shows
modulation of plasma density, Ha,, edge electric field and
fluctuations depending on the plasma density and on the
frequency of applied voltage.

Results strongly depend on the plasma density and on
the applied voltage and its frequency.

Density effects for spontaneous shear development can
compete with biasing effects.




